.. _test_simulations: Test simulations **************** .. |nbsp| unicode:: 0xA0 :trim: These are a number of computationally rather inexpensive test simulations, of which the :ref:`run-specs header files ` are contained in the SICOPOLIS repository. Run ``repo_vialov3d25`` | 3D version of the 2D Vialov profile (Vialov :cite:`vialov_1958`), | SIA, resolution 25 km, :math:`t=0\ldots{}100\,\mathrm{ka}`. | Similar to the EISMINT Phase 1 fixed-margin experiment (Huybrechts et al. :cite:`huybrechts_etal_1996`), but without thermodynamics. Instead, isothermal conditions with :math:`T=-10^{\circ}\mathrm{C}` everywhere are assumed. Run ``repo_emtp2sge25_expA`` | EISMINT Phase 2 Simplified Geometry Experiment A, | SIA, resolution 25 km, :math:`t=0\ldots{}200\,\mathrm{ka}` (Payne et al. :cite:`payne_etal_2000`). | The thermodynamics solver for this run is the one-layer melting-CTS enthalpy scheme (ENTM), while all other runs employ the polythermal two-layer scheme (POLY) (Greve and Blatter :cite:`greve_blatter_2016`). Run ``repo_grl16_bm5_ss25ka`` | Greenland ice sheet, SIA, resolution 16 km, | short steady-state run (:math:`t=0\ldots{}25\,\mathrm{ka}`) for modern climate conditions (:numref:`grl16_ss25ka_volume`; unpublished). Runs ``repo_grl16_bm5_{init100a, ss25ka_nudged}`` | Greenland ice sheet, SIA, resolution 16 km; | :math:`t=-100\,\mathrm{a}\ldots{}0` for the init run without basal sliding (..._init100a), | :math:`t=0\,\ldots{}25\,\mathrm{ka}` for the main run (..._ss25ka_nudged), | steady-state run for modern climate conditions, free evolution during the first 10 ka, after that gradual nudging towards the slightly smoothed present-day topography computed by the init run (:numref:`grl16_ss25ka_volume`; unpublished). .. _grl16_ss25ka_volume: .. figure:: figs/grl16_ss25ka.png :width: 480 px :alt: Ice volume for steady-state simulations for Greenland :align: center Ice volume for the two steady-state simulations for Greenland, repo_grl16_bm5_ss25ka (unconstrained evolution) and repo_grl16_bm5_ss25ka_nudged (topography nudging with time-dependent relaxation time after t |nbsp| = |nbsp| 10 |nbsp| ka). Run ``repo_ant64_bm3_ss25ka`` | Antarctic ice sheet, hybrid shallow-ice--shelfy-stream dynamics (Bernales et al. :cite:`bernales_etal_2017a`), | instantaneous removal of ice shelves ("float-kill"), resolution 64 km, | short steady-state run (:math:`t=0\ldots{}25\,\mathrm{ka}`) for modern climate conditions (:numref:`ant64_bm3_ss25ka0003_H_vs`; unpublished). .. _ant64_bm3_ss25ka0003_H_vs: .. figure:: figs/repo_ant64_bm3_ss25ka0003_H_vs.png :width: 680 px :alt: Ice thickness and surface velocity for float-kill simulation for Antarctica :align: center Ice thickness and surface velocity for the short steady-state simulation for Antarctica with instantaneous removal of ice shelves ("float-kill"), repo_ant64_bm3_ss25ka. The West Antarctic ice sheet has largely disappeared. Run ``repo_grl20_b2_paleo21`` | Greenland ice sheet, SIA, resolution 20 km, | :math:`t=-140\,\mathrm{ka}\ldots{}0`, basal sliding ramped up during the first 5 ka. | Modified, low-resolution version of the spin-up for ISMIP6 InitMIP (Greve et al. :cite:`greve_etal_2017a`). Runs ``repo_grl10_b2_{paleo21, future21_ctrl, future21_asmb}`` | Greenland ice sheet, SIA, resolution 10 km, | :math:`t=-9\,\mathrm{ka}\ldots{}0` for the paleo run, :math:`t=0\ldots{}100\,\mathrm{a}` for the two future runs. | 10-km version of the spin-up and schematic future climate runs for ISMIP6 InitMIP | (:numref:`grl10_b2_future21_vaf`; Greve et al. :cite:`greve_etal_2017a`, Seroussi et al. :cite:`seroussi_etal_2019`). .. _grl10_b2_future21_vaf: .. figure:: figs/grl10_b2_future21.png :width: 480 px :alt: Ice volume above flotation for future climate simulations for Greenland :align: center Ice volume above flotation, expressed in metres of sea-level equivalent (m SLE), for the two ISMIP6 InitMIP future-climate simulations for Greenland, repo_grl10_b2_future21_ctrl (constant-climate control run) and repo_grl10_b2_future21_asmb (schematic surface-mass-balance anomaly applied). Runs ``repo_ant64_b2_{spinup09_init100a, spinup09_fixtopo, spinup09, future09_ctrl, future09_asmb, future09_abmb}`` | Antarctic ice sheet with hybrid shallow-ice--shelfy-stream dynamics | (Bernales et al. :cite:`bernales_etal_2017a`) and ice shelves (SSA), resolution 64 km; | :math:`t=-140.1\ldots{}-140\,\mathrm{ka}` for the init run without basal sliding (..._init100a), | :math:`t=-140\,\mathrm{ka}\ldots{}0` for the run with almost fixed topography (..._fixtopo), basal sliding ramped up during the first 5 ka, | :math:`t=-0.5\,\mathrm{ka}\ldots{}0` for the final, freely-evolving-topography part of the spin-up (..._spinup09), | :math:`t=0\ldots{}100\,\mathrm{a}` for the three future runs (..._future09_{ctrl, asmb, abmb}). | 64-km version of the spin-up and schematic future climate runs for ISMIP6 InitMIP | (:numref:`ant64_b2_future09_vaf`; Seroussi et al. :cite:`seroussi_etal_2019`). .. _ant64_b2_future09_vaf: .. figure:: figs/ant64_b2_future09.png :width: 480 px :alt: Ice volume above flotation for future climate simulations for Antarctica :align: center Ice volume above flotation, expressed in metres of sea-level equivalent (m SLE), for the three ISMIP6 InitMIP future-climate simulations for Antarctica, repo_ant64_b2_future09_ctrl (constant-climate control run), repo_ant64_b2_future09_asmb (schematic surface-mass-balance anomaly applied) and repo_ant64_b2_future09_abmb (schematic sub-ice-shelf-melt anomaly applied). Runs ``repo_asf2_steady``, ``repo_asf2_surge`` | Austfonna, SIA, resolution 2 km, :math:`t=0\ldots{}10\,\mathrm{ka}`. | Similar to Dunse et al. :cite:`dunse_etal_2011`'s Exp. 2 (steady fast flow) and Exp. 5 (surging-type flow), respectively. Runs ``repo_nmars10_steady``, ``repo_smars10_steady`` | North-/south-polar cap of Mars, SIA, resolution 10 km, :math:`t=-10\,\mathrm{Ma}\ldots{}0`. | Steady-state runs by Greve :cite:`greve_2007b`. Run ``repo_nhem80_nt012_new`` | Northern hemisphere, SIA, resolution 80 km, :math:`t=-250\,\mathrm{ka}\ldots{}0`. | Similar to run nt012 by Greve et al. :cite:`greve_etal_1999a`. Run ``repo_heino50_st`` | ISMIP HEINO standard run ST, SIA, resolution 50 km, :math:`t=0\ldots{}200\,\mathrm{ka}` (Calov et al. :cite:`calov_etal_2010`). ------------- **Model times, time steps, computing times:** +-------------------------------------+------------+---------------------+--------------------------+ | Run | Model time | Time step\ :sup:`†` | CPU time I (G)\ :sup:`‡` | +=====================================+============+=====================+==========================+ | repo\_vialov3d25 | 100 ka | 20 a | 1.0 (0.9) min | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_emtp2sge25\_expA | 200 ka | 20 a | 4.7 (4.5) min | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_grl16\_bm5\_ss25ka | 25 ka | 5 a | 10.9 (11.6) min | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_grl16\_bm5\_init100a | 100 a | 5 a | 1.6 (1.6) sec | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_grl16\_bm5\_ss25ka_nudged | 25 ka | 5 a | 11.0 (11.7) min | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_ant64\_bm3\_ss25ka | 25 ka | 2 / 10 a\ :sup:`†` | 8.9 (9.1) min | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_grl20\_b2\_paleo21 | 140 ka | 5 a | 0.9 (0.9) hrs | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_grl10\_b2\_paleo21\ :sup:`\*` | 9 ka | 1 a | 1.1 (1.1) hrs | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_grl10\_b2\_future21\_ctrl | 100 a | 1 a | 1.0 (1.0) min | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_grl10\_b2\_future21\_asmb | 100 a | 1 a | 1.0 (1.0) min | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_ant64\_b2\_spinup09\_init100a | 100 a | 2 / 10 a\ :sup:`†` | 4.3 (4.5) sec | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_ant64\_b2\_spinup09\_fixtopo | 140 ka | 5 / 10 a\ :sup:`†` | 0.7 (0.7) hrs | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_ant64\_b2\_spinup09 | 500 a | 1 / 5 a\ :sup:`†` | 0.7 (0.8) min | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_ant64\_b2\_future09\_ctrl | 100 a | 1 / 5 a\ :sup:`†` | 9.7 (10.4) sec | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_ant64\_b2\_future09\_asmb | 100 a | 1 / 5 a\ :sup:`†` | 9.7 (10.1) sec | +-------------------------------------+------------+---------------------+--------------------------+ | repo\_ant64\_b2\_future09\_abmb | 100 a | 1 / 5 a\ :sup:`†` | 10.2 (12.7) sec | +-------------------------------------+------------+---------------------+--------------------------+ | Table 1: Model times, time steps and computing (CPU) times for the EISMINT, Greenland and Antarctica test simulations contained in the script ``multi_sico_1.sh``, run with SICOPOLIS v24 (revision 030672b35) on a 12-Core Intel Xeon Gold 6256 (3.6 GHz) PC under openSUSE Leap 15.5. | |nbsp| |nbsp| |nbsp| |nbsp| |nbsp| |nbsp| |nbsp| All runs were done on a single core only. The ``repo_ant64_xxx`` runs can be done on multiple cores using OpenMP for the SSA solver. However, at the employed, low resolution of 64 km the solver does not scale well, and the gain in wall clock time by using multiple cores is very small. | |nbsp| |nbsp| |nbsp| |nbsp| |nbsp| |nbsp| |nbsp| \ :sup:`†`: If one value is given, this is the common dynamic (velocity, ice thickness) and thermodynamic (temperature, water content, age) time step. If two values are given (marked by the dagger (\ :sup:`†`) symbol), the first one is the dynamic, the second one the thermodynamic time step. | |nbsp| |nbsp| |nbsp| |nbsp| |nbsp| |nbsp| |nbsp| \ :sup:`‡`: I: Intel Fortran compiler 2021.8.0 for Linux (optimization options ``-xHOST -O3 -no-prec-div``), G: GFortran compiler 13.2.1 (optimization options ``-O3 -ffast-math -ffree-line-length-none``). | |nbsp| |nbsp| |nbsp| |nbsp| |nbsp| |nbsp| |nbsp| \ :sup:`\*`: For this run, see the remark in the :ref:`subsection on the resolution-doubler tool `.