11. References

References

[1]

A. Arakawa and V. R. Lamb. Computational design of the basic dynamical processes of the UCLA general circulation model. In J. Chang, editor, Methods in Computational Physics Vol. 17, pages 173–265. Academic Press, New York, NY, USA, 1977. doi:10.1016/B978-0-12-460817-7.50009-4.

[2]

J. L. Bamber, J. A. Griggs, R. T. W. L. Hurkmans, J. A. Dowdeswell, S. P. Gogineni, I. Howat, J. Mouginot, J. Paden, S. Palmer, E. Rignot, and D. Steinhage. A new bed elevation dataset for Greenland. The Cryosphere, 7(2):499–510, 2013. doi:10.5194/tc-7-499-2013.

[3]

J. Bernales, I. Rogozhina, R. Greve, and M. Thomas. Comparison of hybrid schemes for the combination of shallow approximations in numerical simulations of the Antarctic Ice Sheet. The Cryosphere, 11(1):247–265, 2017. doi:10.5194/tc-11-247-2017.

[4]

J. Bernales, I. Rogozhina, and M. Thomas. Melting and freezing under Antarctic ice shelves from a combination of ice-sheet modelling and observations. Journal of Glaciology, 63(240):731–744, 2017. doi:10.1017/jog.2017.42.

[5]

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Mühlig. Handbook of Mathematics. Springer, Berlin, Germany etc., 6th edition, 2015. doi:10.1007/978-3-662-46221-8.

[6]

W. F. Budd and D. Jenssen. Numerical modelling of the large-scale basal water flux under the West Antarctic ice sheet. In C. J. van der Veen and J. Oerlemans, editors, Dynamics of the West Antarctic Ice Sheet, pages 293–320. D. Reidel Publishing Company, Dordrecht, The Netherlands, 1987. doi:10.1007/978-94-009-3745-1.

[7]

W. F. Budd, P. L. Keage, and N. A. Blundy. Empirical studies of ice sliding. Journal of Glaciology, 23(89):157–170, 1979. doi:10.3189/S0022143000029804.

[8]

R. Calov, S. Beyer, R. Greve, J. Beckmann, M. Willeit, T. Kleiner, M. Rückamp, A. Humbert, and A. Ganopolski. Simulation of the future sea level contribution of Greenland with a new glacial system model. The Cryosphere, 12(10):3097–3121, 2018. doi:10.5194/tc-12-3097-2018.

[9]

R. Calov and R. Greve. A semi-analytical solution for the positive degree-day model with stochastic temperature variations. Journal of Glaciology, 51(172):173–175, 2005. doi:10.3189/172756505781829601.

[10]

R. Calov, R. Greve, A. Abe-Ouchi, E. Bueler, P. Huybrechts, J. V. Johnson, F. Pattyn, D. Pollard, C. Ritz, F. Saito, and L. Tarasov. Results from the Ice-Sheet Model Intercomparison Project – Heinrich Event INtercOmparison (ISMIP HEINO). Journal of Glaciology, 56(197):371–383, 2010. doi:10.3189/002214310792447789.

[11]

R. Calov, A. Robinson, M. Perrette, and A. Ganopolski. Simulating the Greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization. The Cryosphere, 9(1):179–196, 2015. doi:10.5194/tc-9-179-2015.

[12]

T. Dunse, R. Greve, T. V. Schuler, and J. O. Hagen. Permanent fast flow versus cyclic surge behaviour: numerical simulations of the Austfonna ice cap, Svalbard. Journal of Glaciology, 57(202):247–259, 2011. doi:10.3189/002214311796405979.

[13]

W. B. Durham, S. H. Kirby, and L. A. Stern. Creep of water ices at planetary conditions: a compilation. Journal of Geophysical Research: Planets, 102(E7):16293–16302, 1997. doi:10.1029/97JE00916.

[14]

S. S. Gaikwad, L. Hascoet, S. H. K. Narayanan, L. Curry-Logan, R. Greve, and P. Heimbach. SICOPOLIS-AD v2: tangent linear and adjoint modeling framework for ice sheet modeling enabled by automatic differentiation tool Tapenade. Journal of Open Source Software, 8(83):4679, 2023. doi:10.21105/joss.04679.

[15]

J. W. Glen. The creep of polycrystalline ice. Proceedings of the Royal Society A, 228(1175):519–538, 1955. doi:10.1098/rspa.1955.0066.

[16]

H. Goelzer, S. Nowicki, A. Payne, E. Larour, H. Seroussi, W. H. Lipscomb, J. Gregory, A. Abe-Ouchi, A. Shepherd, E. Simon, C. Agosta, P. Alexander, A. Aschwanden, A. Barthel, R. Calov, C. Chambers, Y. Choi, J. Cuzzone, C. Dumas, T. Edwards, D. Felikson, X. Fettweis, N. R. Golledge, R. Greve, A. Humbert, P. Huybrechts, S. Le clec'h, V. Lee, G. Leguy, C. Little, D. P. Lowry, M. Morlighem, I. Nias, A. Quiquet, M. Rückamp, N.-J. Schlegel, D. Slater, R. Smith, F. Straneo, L. Tarasov, R. van de Wal, and M. van den Broeke. The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. The Cryosphere, 14(9):3071–3096, 2020. doi:10.5194/tc-14-3071-2020.

[17]

D. L. Goldsby and D. L. Kohlstedt. Grain boundary sliding in fine-grained ice I. Scripta Materialia, 37(9):1399–1406, 1997. doi:10.1016/S1359-6462(97)00246-7.

[18]

D. L. Goldsby and D. L. Kohlstedt. Superplastic deformation of ice: experimental observations. Journal of Geophysical Research: Solid Earth, 106(B6):11017–11030, 2001. doi:10.1029/2000JB900336.

[19]

R. Greve. A continuum-mechanical formulation for shallow polythermal ice sheets. Philosophical Transactions of the Royal Society A, 355(1726):921–974, 1997. doi:10.1098/rsta.1997.0050.

[20]

R. Greve. Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. Journal of Climate, 10(5):901–918, 1997. doi:10.1175/1520-0442(1997)010<0901:AOAPTD>2.0.CO;2.

[21]

R. Greve. Glacial isostasy: models for the response of the Earth to varying ice loads. In B. Straughan, R. Greve, H. Ehrentraut, and Y. Wang, editors, Continuum Mechanics and Applications in Geophysics and the Environment, pages 307–325. Springer, Berlin, Germany etc., 2001. doi:10.1007/978-3-662-04439-1_16.

[22]

R. Greve. Evolution and dynamics of the Greenland ice sheet over past glacial-interglacial cycles and in future climate-warming scenarios. In Proceedings of the 5th International Workshop on Global Change: Connection to the Arctic (GCCA5), 42–45. University of Tsukuba, Japan, 2004. URL: https://hdl.handle.net/2115/30204.

[23]

R. Greve. Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet. Annals of Glaciology, 42:424–432, 2005. doi:10.3189/172756405781812510.

[24]

R. Greve. Large-scale simulation of the Antarctic ice sheet over climate cycles. Hokkaido University Collection of Scholarly and Academic Papers (HUSCAP), 2006. URL: https://hdl.handle.net/2115/34433.

[25]

R. Greve. The polar ice caps of Mars. Low Temperature Science, 66:139–148, 2007. URL: https://hdl.handle.net/2115/34722.

[26]

R. Greve and H. Blatter. Dynamics of Ice Sheets and Glaciers. Springer, Berlin, Germany etc., 2009. ISBN 978-3-642-03414-5. doi:10.1007/978-3-642-03415-2.

[27]

R. Greve and H. Blatter. Comparison of thermodynamics solvers in the polythermal ice sheet model SICOPOLIS. Polar Science, 10(1):11–23, 2016. doi:10.1016/j.polar.2015.12.004.

[28]

R. Greve and R. Calov. Comparison of numerical schemes for the solution of the ice-thickness equation in a dynamic/thermodynamic ice-sheet model. Journal of Computational Physics, 179(2):649–664, 2002. doi:10.1006/jcph.2002.7081.

[29]

R. Greve, R. Calov, and U. C. Herzfeld. Projecting the response of the Greenland ice sheet to future climate change with the ice sheet model SICOPOLIS. Low Temperature Science, 75:117–129, 2017. doi:10.14943/lowtemsci.75.117.

[30]

R. Greve, B. Grieger, and O. J. Stenzel. MAIC-2, a latitudinal model for the Martian surface temperature, atmospheric water transport and surface glaciation. Planetary and Space Science, 58(6):931–940, 2010. doi:10.1016/j.pss.2010.03.002.

[31]

R. Greve and U. C. Herzfeld. Resolution of ice streams and outlet glaciers in large-scale simulations of the Greenland ice sheet. Annals of Glaciology, 54(63):209–220, 2013. doi:10.3189/2013AoG63A085.

[32]

R. Greve and R. A. Mahajan. Influence of ice rheology and dust content on the dynamics of the north-polar cap of Mars. Icarus, 174(2):475–485, 2005. doi:10.1016/j.icarus.2004.07.031.

[33]

R. Greve, R. A. Mahajan, J. Segschneider, and B. Grieger. Evolution of the north-polar cap of Mars: a modelling study. Planetary and Space Science, 52(9):775–787, 2004. doi:10.1016/j.pss.2004.03.007.

[34]

R. Greve and S. Otsu. The effect of the north-east ice stream on the Greenland ice sheet in changing climates. The Cryosphere Discussions, 1:41–76, 2007. doi:10.5194/tcd-1-41-2007.

[35]

R. Greve, K.-H. Wyrwoll, and A. Eisenhauer. Deglaciation of the Northern Hemisphere at the onset of the Eemian and Holocene. Annals of Glaciology, 28:1–8, 1999. doi:10.3189/172756499781821643.

[36]

P. Huybrechts, A. J. Payne, and EISMINT Intercomparison Group. The EISMINT benchmarks for testing ice-sheet models. Annals of Glaciology, 23:1–12, 1996. doi:10.3189/S0260305500013197.

[37]

A. M. Le Brocq, A. J. Payne, and M. J. Siegert. West Antarctic balance calculations: impact of flux-routing algorithm, smoothing algorithm and topography. Computers & Geosciences, 32(10):1780–1795, 2006. doi:10.1016/j.cageo.2006.05.003.

[38]

A. M. Le Brocq, A. J. Payne, M. J. Siegert, and R. B. Alley. A subglacial water-flow model for West Antarctica. Journal of Glaciology, 55(193):879–888, 2009. doi:10.3189/002214309790152564.

[39]

E. Le Meur and P. Huybrechts. A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacial cycle. Annals of Glaciology, 23:309–317, 1996. doi:10.3189/S0260305500013586.

[40]

L. C. Logan, S. H. K. Narayanan, R. Greve, and P. Heimbach. SICOPOLIS-AD v1: an open-source adjoint modeling framework for ice sheet simulation enabled by the algorithmic differentiation tool OpenAD. Geoscientific Model Development, 13(4):1845–1864, 2020. doi:10.5194/gmd-13-1845-2020.

[41]

Akira Nishida. Experience in developing an open source scalable software infrastructure in Japan. In David Taniar, Osvaldo Gervasi, Beniamino Murgante, Eric Pardede, and Bernady O. Apduhan, editors, Computational Science and Its Applications – ICCSA 2010, Lecture Notes in Computer Science 6017, pages 448–462. Springer, Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-12165-4_36.

[42]

J. F. Nye. The distribution of stress and velocity in glaciers and ice sheets. Proceedings of the Royal Society A, 239(1216):113–133, 1957. doi:10.1098/rspa.1957.0026.

[43]

A. Ohmura. Physical basis for the temperature-based melt-index method. Journal of Applied Meteorology, 40(4):753–761, 2001. doi:10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2.

[44]

A. J. Payne, P. Huybrechts, A. Abe-Ouchi, R. Calov, J. L. Fastook, R. Greve, S. J. Marshall, I. Marsiat, C. Ritz, L. Tarasov, and M. P. A. Thomassen. Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. Journal of Glaciology, 46(153):227–238, 2000. doi:10.3189/172756500781832891.

[45]

M. Rückamp, R. Greve, and A. Humbert. Comparative simulations of the evolution of the Greenland ice sheet under simplified Paris Agreement scenarios with the models SICOPOLIS and ISSM. Polar Science, 21:14–25, 2019. doi:10.1016/j.polar.2018.12.003.

[46]

G. de Q. Robin. Ice movement and temperature distribution in glaciers and ice sheets. Journal of Glaciology, 2(18):523–532, 1955. doi:10.3198/1955JoG2-18-523-532.

[47]

T. Sato and R. Greve. Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Annals of Glaciology, 53(60):221–228, 2012. doi:10.3189/2012AoG60A042.

[48]

H. Seroussi, S. Nowicki, A. J. Payne, H. Goelzer, W. H. Lipscomb, A. Abe-Ouchi, C. Agosta, T. Albrecht, X. Asay-Davis, A. Barthel, R. Calov, R. Cullather, C. Dumas, B. K. Galton-Fenzi, R. Gladstone, N. Golledge, J. M. Gregory, R. Greve, T. Hatterman, M. J. Hoffman, A. Humbert, P. Huybrechts, N. C. Jourdain, T. Kleiner, E. Larour, G. R. Leguy, D. P. Lowry, C. M. Little, M. Morlighem, F. Pattyn, T. Pelle, S. F. Price, A. Quiquet, R. Reese, N.-J. Schlegel, A. Shepherd, E. Simon, R. S. Smith, F. Straneo, S. Sun, L. D. Trusel, J. Van Breedam, R. S. W. van de Wal, R. Winkelmann, C. Zhao, T. Zhang, and T. Zwinger. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. The Cryosphere, 14(9):3033–3070, 2020. doi:10.5194/tc-14-3033-2020.

[49]

G. D. Smith and L. W. Morland. Viscous relations for the steady creep of polycrystalline ice. Cold Regions Science and Technology, 5(2):141–150, 1981. doi:10.1016/0165-232X(81)90048-3.

[50]

S. S. Vialov. Regularities of glacial shields movement and the theory of plastic viscous flow. In Physics of the Motion of Ice, IAHS Publication No. 47, pages 266–275. International Association of Hydrological Sciences, 1958. URL: https://iahs.info/Publications-News/?category=7.

[51]

J. Weertman. On the sliding of glaciers. Journal of Glaciology, 3(21):33–38, 1957. doi:10.3189/S0022143000024709.

[52]

Unidata. Network Common Data Form (NetCDF) [software]. UCAR/Unidata, Boulder, Colorado, USA, 2023. doi:10.5065/D6H70CW6.