10. References

References

[1]

A. Arakawa and V. R. Lamb. Computational design of the basic dynamical processes of the UCLA general circulation model. In J. Chang, editor, Methods in Computational Physics Vol. 17, pages 173–265. Academic Press, New York, NY, USA, 1977.

[2]

J. L. Bamber, J. A. Griggs, R. T. W. L. Hurkmans, J. A. Dowdeswell, S. P. Gogineni, I. Howat, J. Mouginot, J. Paden, S. Palmer, E. Rignot, and D. Steinhage. A new bed elevation dataset for Greenland. The Cryosphere, 7(2):499–510, 2013. doi:10.5194/tc-7-499-2013.

[3]

J. Bernales, I. Rogozhina, R. Greve, and M. Thomas. Comparison of hybrid schemes for the combination of shallow approximations in numerical simulations of the Antarctic Ice Sheet. The Cryosphere, 11(1):247–265, 2017. doi:10.5194/tc-11-247-2017.

[4]

J. Bernales, I. Rogozhina, and M. Thomas. Melting and freezing under Antarctic ice shelves from a combination of ice-sheet modelling and observations. Journal of Glaciology, 63(240):731–744, 2017. doi:10.1017/jog.2017.42.

[5]

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Mühlig. Handbook of Mathematics. Springer, Berlin, Germany etc., 6th edition, 2015. doi:10.1007/978-3-662-46221-8.

[6]

R. Calov, S. Beyer, R. Greve, J. Beckmann, M. Willeit, T. Kleiner, M. Rückamp, A. Humbert, and A. Ganopolski. Simulation of the future sea level contribution of Greenland with a new glacial system model. The Cryosphere, 12(10):3097–3121, 2018. doi:10.5194/tc-12-3097-2018.

[7]

R. Calov, R. Greve, A. Abe-Ouchi, E. Bueler, P. Huybrechts, J. V. Johnson, F. Pattyn, D. Pollard, C. Ritz, F. Saito, and L. Tarasov. Results from the Ice-Sheet Model Intercomparison Project – Heinrich Event INtercOmparison (ISMIP HEINO). Journal of Glaciology, 56(197):371–383, 2010. doi:10.3189/002214310792447789.

[8]

T. Dunse, R. Greve, T. V. Schuler, and J. O. Hagen. Permanent fast flow versus cyclic surge behaviour: numerical simulations of the Austfonna ice cap, Svalbard. Journal of Glaciology, 57(202):247–259, 2011. doi:10.3189/002214311796405979.

[9]

S. S. Gaikwad, L. Hascoet, S. H. K. Narayanan, L. Curry-Logan, R. Greve, and P. Heimbach. SICOPOLIS-AD v2: tangent linear and adjoint modeling framework for ice sheet modeling enabled by automatic differentiation tool Tapenade. Journal of Open Source Software, 8(83):4679, 2023. doi:10.21105/joss.04679.

[10]

R. Greve. A continuum-mechanical formulation for shallow polythermal ice sheets. Philosophical Transactions of the Royal Society A, 355(1726):921–974, 1997. doi:10.1098/rsta.1997.0050.

[11]

R. Greve. Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. Journal of Climate, 10(5):901–918, 1997. doi:10.1175/1520-0442(1997)010<0901:AOAPTD>2.0.CO;2.

[12]

R. Greve. Glacial isostasy: models for the response of the Earth to varying ice loads. In B. Straughan, R. Greve, H. Ehrentraut, and Y. Wang, editors, Continuum Mechanics and Applications in Geophysics and the Environment, pages 307–325. Springer, Berlin, Germany etc., 2001. doi:10.1007/978-3-662-04439-1_16.

[13]

R. Greve. Evolution and dynamics of the Greenland ice sheet over past glacial-interglacial cycles and in future climate-warming scenarios. In Proceedings of the 5th International Workshop on Global Change: Connection to the Arctic (GCCA5), 42–45. University of Tsukuba, Japan, 2004. URL: http://hdl.handle.net/2115/30204.

[14]

R. Greve. Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet. Annals of Glaciology, 42:424–432, 2005. doi:10.3189/172756405781812510.

[15]

R. Greve. Large-scale simulation of the Antarctic ice sheet over climate cycles. Hokkaido University Collection of Scholarly and Academic Papers (HUSCAP), 2006. URL: http://hdl.handle.net/2115/34433.

[16]

R. Greve. The polar ice caps of Mars. Low Temperature Science, 66:139–148, 2007. URL: http://hdl.handle.net/2115/34722.

[17]

R. Greve and H. Blatter. Dynamics of Ice Sheets and Glaciers. Springer, Berlin, Germany etc., 2009. ISBN 978-3-642-03414-5. doi:10.1007/978-3-642-03415-2.

[18]

R. Greve and H. Blatter. Comparison of thermodynamics solvers in the polythermal ice sheet model SICOPOLIS. Polar Science, 10(1):11–23, 2016. doi:10.1016/j.polar.2015.12.004.

[19]

R. Greve, R. Calov, and U. C. Herzfeld. Projecting the response of the Greenland ice sheet to future climate change with the ice sheet model SICOPOLIS. Low Temperature Science, 75:117–129, 2017. doi:10.14943/lowtemsci.75.117.

[20]

R. Greve and U. C. Herzfeld. Resolution of ice streams and outlet glaciers in large-scale simulations of the Greenland ice sheet. Annals of Glaciology, 54(63):209–220, 2013. doi:10.3189/2013AoG63A085.

[21]

R. Greve and S. Otsu. The effect of the north-east ice stream on the Greenland ice sheet in changing climates. The Cryosphere Discussions, 1:41–76, 2007. doi:10.5194/tcd-1-41-2007.

[22]

R. Greve, K.-H. Wyrwoll, and A. Eisenhauer. Deglaciation of the Northern Hemisphere at the onset of the Eemian and Holocene. Annals of Glaciology, 28:1–8, 1999. doi:10.3189/172756499781821643.

[23]

P. Huybrechts, A. J. Payne, and EISMINT Intercomparison Group. The EISMINT benchmarks for testing ice-sheet models. Annals of Glaciology, 23:1–12, 1996. doi:10.3189/S0260305500013197.

[24]

A. M. Le Brocq, A. J. Payne, and M. J. Siegert. West Antarctic balance calculations: impact of flux-routing algorithm, smoothing algorithm and topography. Computers & Geosciences, 32(10):1780–1795, 2006. doi:10.1016/j.cageo.2006.05.003.

[25]

A. M. Le Brocq, A. J. Payne, M. J. Siegert, and R. B. Alley. A subglacial water-flow model for West Antarctica. Journal of Glaciology, 55(193):879–888, 2009. doi:10.3189/002214309790152564.

[26]

E. Le Meur and P. Huybrechts. A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacial cycle. Annals of Glaciology, 23:309–317, 1996. doi:10.3189/S0260305500013586.

[27]

L. C. Logan, S. H. K. Narayanan, R. Greve, and P. Heimbach. SICOPOLIS-AD v1: an open-source adjoint modeling framework for ice sheet simulation enabled by the algorithmic differentiation tool OpenAD. Geoscientific Model Development, 13(4):1845–1864, 2020. doi:10.5194/gmd-13-1845-2020.

[28]

Akira Nishida. Experience in developing an open source scalable software infrastructure in Japan. In David Taniar, Osvaldo Gervasi, Beniamino Murgante, Eric Pardede, and Bernady O. Apduhan, editors, Computational Science and Its Applications – ICCSA 2010, Lecture Notes in Computer Science 6017, pages 448–462. Springer, Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-12165-4_36.

[29]

A. J. Payne, P. Huybrechts, A. Abe-Ouchi, R. Calov, J. L. Fastook, R. Greve, S. J. Marshall, I. Marsiat, C. Ritz, L. Tarasov, and M. P. A. Thomassen. Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. Journal of Glaciology, 46(153):227–238, 2000. doi:10.3189/172756500781832891.

[30]

T. Sato and R. Greve. Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Annals of Glaciology, 53(60):221–228, 2012. doi:10.3189/2012AoG60A042.

[31]

S. S. Vialov. Regularities of glacial shields movement and the theory of plastic viscous flow. In Physics of the Motion of Ice, IAHS Publication No. 47, pages 266–275. IAHS Press, Wallingford, UK, 1958.